18,362 research outputs found

    Ablation structures Patent

    Get PDF
    Design, development, and characteristics of ablation structure

    Vehicle parachute and equipment jettison system Patent

    Get PDF
    Parachute system for lowering manned spacecraft from post-reentry to ocean landin

    The condition of a finite Markov chain and perturbation bounds for the limiting probabilities

    Get PDF
    The inequalities bounding the relative error the norm of w- w squiggly/the norm of w are exhibited by a very simple function of E and A. Let T denote the transition matrix of an ergodic chain, C, and let A = I - T. Let E be a perturbation matrix such that T squiggly = T - E is also the transition matrix of an ergodic chain, C squiggly. Let w and w squiggly denote the limiting probability (row) vectors for C and C squiggly. The inequality is the best one possible. This bound can be significant in the numerical determination of the limiting probabilities for an ergodic chain. In addition to presenting a sharp bound for the norm of w-w squiggly/the norm of w an explicit expression for w squiggly will be derived in which w squiggly is given as a function of E, A, w and some other related terms

    Numerical methods for problems involving the Drazin inverse

    Get PDF
    The objective was to try to develop a useful numerical algorithm for the Drazin inverse and to analyze the numerical aspects of the applications of the Drazin inverse relating to the study of homogeneous Markov chains and systems of linear differential equations with singular coefficient matrices. It is felt that all objectives were accomplished with a measurable degree of success

    A unique flight test facility: Description and results

    Get PDF
    The Dryden Flight Research Facility has developed a unique research facility for conducting aerodynamic and fluid mechanics experiments in flight. A low aspect ratio fin, referred to as the flight test fixture (FTF), is mounted on the underside of the fuselage of an F-104G aircraft. The F-104G/FTF facility is described, and the capabilities are discussed. The capabilities include (1) a large Mach number envelope (0.4 to 2.0), including the region through Mach 1.0; (2) the potential ability to test articles larger than those that can be tested in wind tunnels; (3) the large chord Reynolds number envelope (greater than 40 million); and (4) the ability to define small increments in friction drag between two test surfaces. Data are presented from experiments that demonstrate some of the capabilities of the FTF, including the shuttle thermal protection system airload tests, instrument development, and base drag studies. Proposed skin friction experiments and instrument evaluation studies are also discussed

    Aerial capsule emergency separation device Patent

    Get PDF
    Aerial capsule emergency separation device using jettisonable tower

    Modification and improvements to cooled blades Patent

    Get PDF
    Modification and improvement of turbine blades for maximum cooling efficienc

    In-flight rain damage tests of the shuttle thermal protection system

    Get PDF
    NASA conducted in-flight rain damage tests of the Shuttle thermal protection system (TPS). Most of the tests were conducted on an F-104 aircraft at the Dryden Flight Research Facility of NASA's Ames Research Center, although some tests were conducted by NOAA on a WP-3D aircraft off the eastern coast of southern Florida. The TPS components tested included LI900 and LI2200 tiles, advanced flexible reusable surface insulation, reinforced carbon-carbon, and an advanced tufi tile. The objective of the test was to define the damage threshold of various thermal protection materials during flight through rain. The test hardware, test technique, and results from both F-104 and WP-3D aircraft are described. Results have shown that damage can occur to the Shuttle TPS during flight in rain

    Flight tests of the total automatic flight control system (Tafcos) concept on a DHC-6 Twin Otter aircraft

    Get PDF
    Flight control systems capable of handling the complex operational requirements of the STOL and VTOL aircraft designs as well as designs using active control concepts are considered. Emphasis is placed on the total automatic flight control system (TACOS) (TAFCOS). Flight test results which verified the performance of the system concept are presented

    In-flight investigation of shuttle tile pressure orifice installations

    Get PDF
    To determine shuttle orbiter wing loads during ascent, wing load instrumentation was added to Columbia (OV-102). This instrumentation included strain gages and pressure orifices on the wing. The loads derived from wing pressure measurements taken during STS 61-C did not agree with those derived from strain gage measurements or with the loads predicted from the aerodynamic database. Anomalies in the surface immediately surrounding the pressure orifices in the thermal protection system (TPS) tiles were one possible cause of errors in the loads derived from wing pressure measurements. These surface anomalies were caused by a ceramic filler material which was installed around the pressure tubing. The filler material allowed slight movement of the TPS tile and pressure tube as the airframe flexed and bent under aerodynamic loads during ascent and descent. Postflight inspection revealed that this filler material had protruded from or receeded beneath the surface, causing the orifice to lose its flushness. Flight tests were conducted at NASA Ames Research Center Dryden Flight Research Facility to determine the effects of any anomaly in surface flushness of the orifice installation on the measured pressures at Mach numbers between 0.6 and 1.4. An F-104 aircraft with a flight test fixture mounted beneath the fuselage was used for these flights. Surface flushness anomalies typical of those on the orbiter after flight (STA 61-C) were tested. Also, cases with excessive protrusion and recession of the filler material were tested. This report shows that the anomalies in STS 61-C orifice installations adversely affected the pressure measurements. But the magnitude of the affect was not great enough to account for the discrepancies with the strain gage measurements and the aerodynamic predictions
    corecore